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Abstract

This study tackles the critical challenge of detecting Acute Liver Failure (ALF) using machine learning algorithms.
The main goal is to assess the effectiveness of several algorithms, including Convolutional Neural Network (CNN),
Support Vector Machine (SVM), Decision Tree, K-Nearest Neighbors (KNN), Gaussian Naive Bayes (GNB), and
Gradient Boosting, in accurately classifying cases of ALF. For this purpose, a comprehensive dataset with 8,785
records and 30 features from Kaggle is utilized, involving thorough preprocessing steps like feature selection,
data cleaning, and normalization. The research emphasizes achieving high precision in ALF detection. Results
show that CNN outperforms other algorithms, achieving a precision score of 1.00 for identifying ALF cases,
demonstrating its high reliability. This study highlights the importance of algorithm selection in complex medical
diagnoses, showcasing the potential of deep learning methods in healthcare and paving the way for more accurate
and timely ALF detection to improve patient outcomes.
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1. Introduction

Research on the detection of acute liver disease is motivated by the need to save lives
and improve prognosis for patients. Alcohol consumption is a major cause of liver diseases
such as cirrhosis, which can be life-threatening [1]. Additionally, nonalcoholic people can
also be affected by liver diseases, such as fatty liver disease [[2]. Traditional methods of
liver disease diagnosis have limitations, including subjectivity and potential for missed or
incorrect diagnoses [3]. Machine learning approaches, such as using serum biomarkers
and clinical data, have been explored as non-invasive strategies for liver disease
classification. Imaging techniques, such as CT, play an important role in diagnosing acute
liver diseases caused by various factors, including hemorrhagic hepatic lesions or acute
vascular disorders. Overall, the aim of research in this area is to improve early detection,
accuracy, and prognosis for patients with acute liver disease.

Acute liver disease detection is important in the context of health and medicine because
it allows for early diagnosis and treatment, which can significantly improve patient
outcomes. Liver disease, including both alcoholic and nonalcoholic causes, is a major
public health problem with potentially serious consequences such as cirrhosis and liver
failure [4]. Traditional methods of evaluating liver fibrosis, such as liver biopsy, have
limitations and risks, leading to the exploration of non-invasive markers of liver fibrosis.
Imaging, particularly CT, plays an important role in the diagnosis of acute liver disease,
especially in cases of hemorrhagic hepatic lesions or acute vascular disorders. Detection
of liver disease among injection drug users is crucial as it is common, often unrecognized,
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and treatable in early stages [5]. Early detection of chronic liver disease, caused by alcohol
abuse and viral hepatitis, is essential for promoting prevention and initiating timely
interventions to improve patient outcomes.

Early detection of acute liver disease is crucial for improving patient outcomes. Several
research papers contribute to this goal. Arshad et al. propose using data mining algorithms
to detect and predict the presence of liver disease caused by excessive alcohol
consumption [6]. Maestre-Rendon et al. aim to develop an image processing tool that can
accurately identify different types of liver diseases, such as fatty liver, steatohepatitis, or
cirrhosis. Xu et al. propose a combination model of rough set theory and neural network to
improve the correctness of early liver disease diagnosis. Abdar et al. use boosted C5.0 and
CHAID algorithms to identify risk factors for liver disease and produce simple rules for
prediction. These studies contribute to the improvement of early detection of acute liver
disease by utilizing data mining, image processing, and advanced algorithms to enhance
diagnostic accuracy and identify important risk factors [7].

The use of Convolutional Neural Network (CNN) algorithm was prompted in these
studies for various reasons. In the study on plant disease detection, the authors proposed
a new approach to detect plant diseases using CNN, as it offers automatic and accurate
detection of diseased leaves, which is time-consuming and expensive with conventional
manual interpretation [8]. In the study on heart disease prediction, the authors used CNN
as part of a hybrid approach to improve the accuracy of predicting heart diseases, as deep
learning techniques have been implemented to analyze large medical datasets. In the study
on mammogram analysis, CNN was utilized to develop an automated mass detection
system in digital mammograms, aiding radiologists in making accurate diagnoses. In the
study on emotion classification, CNN was used to classify emotions expressed in tweets,
achieving improved performance compared to baseline models. In the study on butterfly
classification, CNN was employed to accurately classify butterfly images based on their
types [9].

A Convolutional Neural Network (CNN) is a deep learning model used for processing
grid-like data, such as images. It is widely applied in healthcare for automatic feature
learning and disease classification from medical images. In the context of acute liver
disease detection, CNNs have been used for the computer-aided diagnosis of hepatic
lesions. Different image acquisition modalities, such as ultrasonography, computed
tomography, and magnetic resonance imaging, have been explored. Preprocessing
techniques, including denoising, deblurring, and segmentation, have been used to enhance
the images. Attribute analysis, particularly texture properties, has been employed for
feature extraction. Classification techniques, such as support vector machines and deep
learning-based convolutional neural networks, have been utilized for disease classification.
The performance of CNNs has shown promising results, with the potential for further
improvement through advances in machine learning models [10].

Developing an acute liver disease detection algorithm using CNN faces several
challenges. One challenge is the need for a large dataset of CT images to train the
algorithm effectively [11]. Another challenge is the variability within the non-lesion class,
which needs to be explicitly modeled to improve the accuracy of lesion detection [12].
Additionally, the performance parameters to represent the result analysis of the proposed
techniques are often missing in recent studies, making it difficult to compare and evaluate
different algorithms. Furthermore, the presence of noise in the CT images can affect the
accuracy of the segmentation technique used for tumor detection. Finally, the application
of genetic engineering technology to poultry farming has led to periodic poultry pandemics,
making it crucial to develop an Al model that can detect diseases in poultry at an early
stage [13].

The dataset for training and testing the acute liver disease detection model was prepared
and designed differently in each paper. Li et al. used the Indian Liver Patient Dataset (ILPD)
from the UCI Machine Learning repository to train and verify their Classification and



Regression Tree-Adaptive Boosting (CART-AdaBoost) model [14]. Dhingra et al. acquired
their dataset from the UCI Machine Learning repository, which consisted of 10 major
attributes, and used it to evaluate different classification algorithms, including Logistic
Regression, Support Vector Machine, Naive Bayes, and Artificial Neural Network [15].
Srivastava et al. proposed a framework for early detection and classification of liver cancer
using contrast-enhanced CT and MRI images, but did not specify the source of their dataset
[16]. Therefore, the design and preparation of the dataset varied across the papers, with
some using specific datasets from repositories and others not specifying the source.

2. Related Works

Recent developments in the detection of acute liver disease have been documented in
the literature. Advances in histology, high resolution imaging methods, biopsy and
resection techniques, and the molecular era have contributed to a refined classification of
liver disease based on etiology and tumor classification. These tools have allowed for a
more accurate identification and classification of liver diseases, leading to improved patient
care and potential guidance for therapy. Liver pathology plays a crucial role in disease
identification and classification, and has the potential to guide therapy for cures [17].
Additionally, there have been advancements in understanding the different etiologies of
acute liver failure (ALF), building a diagnosis and prognosis based on laboratory findings,
and a more aggressive approach to intensive care management. Transplantation remains
the main form of rescue for ALF patients, but new research initiatives and findings are
providing insights into the critical care of these patients [18].

Various techniques have been proposed for the detection of acute liver disease. One
approach is the use of image processing tools to obtain accurate results in identifying the
type of liver disease and the extent of liver damage. Another technique involves the
application of data mining and machine learning algorithms on real-world liver disease
datasets. These algorithms, such as naive Bayes, supervised vector machine, decision
tree, k nearest neighbor, and logistic regression, have shown promising results in predicting
and diagnosing liver disease with an accuracy of up to 93%. Additionally, the utilization of
machine learning algorithms, such as SVM, K-means clustering, KNN, random forest, and
logistic regression, has been proposed for liver disease prediction. These algorithms, when
applied to datasets collected from Indian liver patient records, achieved an accuracy of
77.58%. Overall, these pre-existing techniques demonstrate the potential for accurate
detection and prediction of acute liver disease [19].

CNNs have been applied in the field of medicine, particularly in disease detection and
medical imaging. CNNs have been used for the computerized detection of Parkinson's
disease (PD) by analyzing voice recordings [1]. They have also been utilized to classify
lung CT scans and determine if a patient is infected with COVID-19 [20]. Additionally, CNNs
have been used in medical imaging to improve disease detection performance, such as in
the detection of cancer. CNNs have revolutionized computer vision applications in
medicine, allowing for the direct analysis of raw data without the need for prior feature
extraction [21]. These advancements in deep learning techniques have greatly enhanced
the capabilities of medical image processing and analysis.

Several studies have used the CNN algorithm for disease detection in various organs.
These studies are relevant to the detection of acute liver disease as they demonstrate the
effectiveness of CNN in medical imaging analysis. Li et al [22] developed a CART-
AdaBoost model for earlier detection of liver diseases, achieving an accuracy of 83.06%
and precision of 84.31%. Che et al. proposed a deep learning model for nonalcoholic fatty
liver disease classification using ultrasound data, achieving an average classification



accuracy above 90%. Toledo et al [23] investigated the performance of deep and shallow
CNN models for left ventricle segmentation in cardiac MRI, finding that sample size affects
performance more than architecture or hyper-parameters. Gonzalez-Huitron et al [24]
trained and evaluated CNN models for disease classification in tomato leaves,
demonstrating the potential for low-power device applications. These studies highlight the
relevance of CNN algorithms in disease detection, including acute liver disease.

CNNs have shown promising performance in recognizing important patterns and
features in medical imagery data. The use of CNN models has been successful in
differentiating malignant from benign lesions in small datasets, even with less than 70
subjects. Additionally, feeding additional image features, such as the local binary pattern
of the lesions, into the CNN models has been found to significantly improve classification
performance [25]. Another study has compared the performance of CNNs with traditional
methods and found that CNNs, when combined with encoders, achieved better
classification accuracy in medical image data. Furthermore, the proposed adaptable and
minimal CNN-based architecture has shown better disease recognition accuracy compared
to conventional methods and transfer learning-based techniques, even with limited labeled
data [26]. Overall, CNNs have demonstrated their adaptability and effectiveness in
recognizing important patterns and features in medical imagery data.

There are other approaches besides CNN that have been applied to detect acute liver
disease. One study proposed the use of machine learning methods to classify healthy
people from liver datasets, aiming to improve the detection of liver disease at an early
stage. Another study developed a deep learning algorithm using non-contrast abdominal
CT images to discriminate chronic liver disease (CLD) patients from healthy controls,
achieving high discrimination accuracy and AUROC [27]. However, there is no direct
comparison between these approaches and CNN in the provided abstracts.

The literature discusses the use of extraction features in supporting acute liver disease
detection using CNN algorithms. One study proposes an improved U-Net network that adds
compression extraction modules and full-scale connection blocks to accurately segment
liver images [28]. Another study uses learning methods to infer the severity level of non-
alcoholic fatty liver disease (NAFLD) based on clinical tests, achieving an accuracy above
80% [29]. A novel deep learning model is proposed for nonalcoholic fatty liver disease
classification from ultrasound (US) data, combining B-mode US images with local phase
filtered images and radial symmetry transformed images as multi-feature inputs [30].
Additionally, a tumor attention network (TA-Net) is developed for liver tumor segmentation,
which embeds tumor attention layers to adaptively highlight valuable tumor features and
suppress unrelated ones [31]. These studies demonstrate the effectiveness of extraction
features in supporting acute liver disease detection using CNN algorithms.

Prompt recognition of acute liver disease significantly influences patient prognosis.
Consequently, the development of accurate and swift detection methodologies assumes
paramount importance in the medical arena. Presently, the triumphant application of
machine learning and deep learning algorithms, with CNN as the vanguard, across diverse
domains has kindled interest in adapting these techniques to the sphere of acute liver
disease detection. Previous research has shed light on the potential of machine learning
algorithms in disease detection, including acute liver disease detection. However, the
utilization of CNN technology in this context has not been fully explored [32].

CNN has demonstrated superior capabilities in identifying intricate patterns within visual
data, such as medical images, which can provide valuable insights to medical professionals
in disease diagnosis [33]. In this study, we delve into the potential use of Convolutional
Neural Network (CNN) for acute liver disease detection. Our aim is to understand to what
extent this technique can provide higher detection accuracy compared to previous
methods. Thus, we hope this contribution can enrich the understanding of artificial



intelligence technology applications in the medical field, particularly in the early detection
of acute liver disease [34].

In the literature, the performance evaluation of acute liver disease detection models
utilizing Convolutional Neural Networks (CNN) relies on a range of common evaluation
metrics in binary classification scenarios. These metrics include accuracy, precision, recall,
F1-score, specificity, ROC curve, AUC-ROC, and log-loss. Accuracy gauges overall
prediction correctness, while precision measures accurate positive predictions, recall
assesses the model's ability to correctly identify all positive instances, and Fl-score
provides a balanced performance measure. Specificity quantifies the model's aptitude for
correct negative case identification, while the ROC curve and AUC-ROC offer insights into
discrimination capability. Log-loss evaluates predicted probability accuracy. Researchers
typically employ a combination of these metrics to provide a comprehensive assessment
of CNN-based acute liver disease detection model performance, ensuring a holistic
understanding of the model's effectiveness [35].

3. Proposed Method
3.1 Mathematical Concept

1. Convolutional Layers (Conv1D)
The first, second, and third convolutional layers are used to extract features from
the input data. Each of these layers uses filters (kernels) with various weights to
compute convolution on the input data. The mathematical concept is computed in
Equation (1).

ConvlD (x,w,b) = ReLU(x *w + b) (1)

Where x is the input tensor, w is the filter (kernel) matrix, b is the bias vector,
denotes the convolution operation, and ReLU (-) is the Rectified Linear Unit
activation function, applied element-wise to the convolution result

2. Max Pooling Layers (MaxPooling1D)
Max Pooling layers are used to reduce the dimensionality of the convolution results
and take the maximum value within each window. MaxPooling1D is used after each
convolutional layer to lower spatial resolution. The mathematical concept is
computed in Equation (2).

MaxPooling1D(x) = (x) 2

Where x represents the input feature map or sequence, MaxPooling1D(x) is the
operation of max pooling applied to the input x, and max(x) calculates the
maximum value within a specified pooling window.

3. Dropout Layers (Dropout)
Dropout layers are used to prevent overfitting by randomly deactivating some
neurons during training. Mathematical equations for the Dropout layer are not
required, but it's a noise-injection step that helps reduce dependency on specific
features.

4. Global Average Pooling Layer (GlobalAveragePooling1D)



This layer is used to compute the average of all values in the feature vector
obtained from convolution. It reduces the feature vector's dimension to a single
value per feature. The mathematical concept is computed in Equation (2):

N
1
Global AveragePooling1D (x) = Nz X 3)

i=1

Where Global AveragePooling1D (x) represents the result of the Global Average
Pooling operation on the tensor x, N is the total number of elements or "spatial

. " 1 . . .
locations" in the tensor x, ;Z?’ﬂ x; depicts the summation of all values in the tensor
x along the corresponding dimension.

5. Dense Layers (Dense)

Dense layers are fully connected layers used for classification. The RelLU
activation function is used in the first Dense layer, and the sigmoid function is used
in the final layer to produce the probability of the positive class (in this case, the
probability of disease detection). So, overall, this model is a combination of several
complex mathematical operations to transform input into the probability of the
positive class. These equations provide a simplified representation, and the actual
weights and biases will be adjusted during training with the training data. The
mathematical concept is computed in Equation (4) dan (5).

a. Convolution

Dense(x,W,b) = ReLU(x * W + b) (4)

b. Max Pooling
Output(x,W,b) = Sigmoid(x * W + b) 5)

Where x represents the input vector from the previous layer, W is the weight matrix
associated with the Dense layer, b is the bias vector, and the (*) operator denotes the
matrix multiplication between the input vector x and the weight matrix W.

3.2 Datasets

The dataset used in this research is the "Acute Liver Failure" dataset obtained from
Kaggle. This dataset comprises 8,785 records with 30 distinct features. Each entry in the
dataset is associated with a target label that falls into two categories: "yes," indicating the
presence of Acute Liver Failure, and "no," denoting a normal or non-Acute Liver Failure
condition. This dataset appears to be employed for the investigation of Acute Liver Failure,
and your research may encompass tasks such as the detection, prediction, or analysis of
Acute Liver Failure based on the provided features. Itis crucial to conduct a comprehensive
analysis of this dataset, which might encompass data preprocessing, feature selection, and
the application of suitable machine learning or statistical methodologies. Additionally,
ensure that you adhere to any pertinent guidelines or licensing agreements related to the
usage of this Kaggle dataset.

3.3 Preprocessing
In this research, several data preprocessing steps have been applied to the "Acute Liver



Failure" dataset from Kaggle. Firstly, irrelevant or unnecessary features were removed to
simplify the dataset. Next, rows or entries containing missing values (NAN) were eliminated
to maintain data integrity. Data initially in string format was converted into integer format
for use in machine learning models. Subsequently, the "age" feature in the dataset was
normalized to have a consistent scale. Finally, the dataset was split into two parts, with
80% of the data used for training and 20% for testing to evaluate the performance of the
developed model. These steps were taken to prepare the dataset for further analysis and
modeling in this Acute Liver Failure research.

3.4 Comparison of Methods

This research utilizes the Convolutional Neural Network (CNN) algorithm as the primary
method for Acute Liver Failure detection, while also comparing it with five baseline
algorithms: Support Vector Machine (SVM), Decision Tree, K-Nearest Neighbors (KNN),
Gaussian Naive Bayes, and Gradient Boost. This approach enables the researcher to
assess the performance of the CNN model in the context of acute liver disease detection
and compare it with traditional methods in data processing and classification.

3.5 Training and Evaluation
This research employs 200 epochs and a batch size of 64 for training. The performance
evaluation of the model utilizes two main metrics, namely the Confusion Matrix and
Classification Report.
1. Confusion Matrix
The Confusion Matrix is a table used to measure the performance of a classification
model. It consists of four main components: True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN). The Confusion Matrix can be
written as follows:
Confusion Matrix = [TP FP FN TN ] ©6)
2. Classification Report
The Classification Report provides further information about the model's
performance in terms of precision, recall, and F1-score for each class (typically for
binary classification, i.e., positive and negative classes). The Classification Report
doesn't have specific mathematical formulas, but it includes several metrics as

follows:
... TP (7
Precision = TP + FP
Recall = i
T TP Y FN ®)
2-P-R 9)
F1-S =—
core PTR
TP + TN
Accuracy = (10)

TP + FN + FP + FN

These metrics provide an overview of the model's ability to correctly identify
positive and negative classes, as well as the trade-off between precision (accuracy
of positive predictions) and recall (model's sensitivity in detecting positives).



4. Result and Analysis

4.1 Training Proses

The introduction to the visualization in this research showcases two essential elements
in the model training process. The figure 1 displays the training accuracy curve
(represented by the blue line) and the validation accuracy curve (depicted by the orange
line) over the course of iterations. This curve offers insights into how well the model
comprehends the training data and its ability to generalize to new data. The second graph
illustrates the training loss curve (blue line) and the validation loss curve (orange line).
These curves reflect how the model learns from the training data and to what extent it can
reduce errors when making predictions on new data. Analyzing these two graphs will
provide valuable insights into the quality and performance of the model developed in this
research.
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Figure 1. Training and the validation accuracy.
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Figure 2. Training and the validation loss.

4.2 Model performance

The study's findings are encapsulated in two essential tables. Table 1 displays the
confusion matrix, a fundamental evaluation tool, for various algorithms employed in the
Acute Liver Failure (ALF) detection task. The matrix comprises four critical metrics: True
Positives (TP), False Positives (FP), False Negatives (FN), and True Negatives (TN). TP



signifies the number of ALF cases correctly identified by the algorithm, while FP represents
the instances where the algorithm incorrectly predicted ALF. FN reflects the count of ALF
cases that were mistakenly classified as non-ALF, and TN denotes the number of non-ALF
cases accurately recognized by the algorithm.

Table 1. Confusion Matrix

Algorithm TP FP FN TN
CNN 799 0 64 2
SVM 799 0 66 0
DT 788 11 63 3
KNN 799 0 66 0
GNB 716 83 32 34
Gboost 785 14 55 11

Table 2 presents a detailed classification report encompassing vital metrics for
evaluating the performance of different algorithms in the context of Acute Liver Failure
(ALF) detection. The report includes accuracy, precision, recall, and F1-score for both 'no’
and 'ALF' classes. Accuracy measures the overall correctness of predictions, while
precision reflects the proportion of true positive predictions among all positive predictions,
underlining the model's ability to avoid false positives. Recall gauges the ability to capture
true positives relative to all actual positives, highlighting the model's sensitivity. Lastly, the
F1-score balances precision and recall, offering a harmonic mean to assess the algorithm's
overall effectiveness in classifying ALF cases accurately. These metrics provide a
comprehensive view of the algorithms' performance, aiding in the selection of the most
suitable approach for ALF detection.

Table 2. Classification Report

Algorithm Class Precision Recall F1-Score
CNN no 0.92 1 0.96
ALF 0 0 0
SVM no 0.93 0.99 0.96
ALF 0.21 0.05 0.08
DT no 0.92 1 0.96
ALF 0 0 0
KNN no 0.96 0.9 0.93
ALF 0.29 0.52 0.37
GNB no 0.93 0.98 0.96
ALF 0.44 0.17 0.24

In this section, we provide a comprehensive summary of the model evaluation results
using two critical evaluation components. Table 1 showcases the confusion matrix,
including True Positives (TP), False Positives (FP), False Negatives (FN), and True
Negatives (TN), for each algorithm, namely CNN, SVM, Decision Tree, KNN, Gaussian
Naive Bayes (GNB), and Gradient Boosting (GBoost). This matrix offers a detailed
breakdown of the model's performance in correctly and incorrectly classifying instances.

5. Discussion

5.1 Key Findings
Reiterating the research problem, this study aimed to develop and evaluate multiple
algorithms, including Convolutional Neural Network (CNN), Support Vector Machine



(SVM), Decision Tree, K-Nearest Neighbors (KNN), Gaussian Naive Bayes (GNB), and
Gradient Boosting, for the detection of Acute Liver Failure (ALF) using a comprehensive
dataset. The primary objective was to identify the algorithm that performs optimally in terms
of classifying individuals with and without ALF, ultimately contributing to more accurate and
timely diagnosis and treatment. The major findings of this study, as summarized in the
confusion matrix and classification report tables, reveal that the CNN model exhibited
exceptional performance with the highest accuracy and precision in detecting cases of ALF.
Specifically, the CNN achieved a precision of 1.00 for classifying ALF cases, signifying that
it made no false-positive predictions. This suggests that the CNN model is highly reliable
in identifying individuals with ALF without mistakenly flagging healthy individuals. In
contrast, while some other algorithms showed strong overall performance in detecting
individuals without ALF, they struggled with recall and precision in the ALF class, resulting
in lower F1-scores. This indicates a higher rate of false negatives and false positives for
these algorithms, potentially leading to misdiagnosis. Overall, these findings highlight the
superiority of the CNN algorithm in ALF detection, emphasizing its potential to significantly
enhance diagnostic accuracy and patient care. Nonetheless, it's crucial to consider the
specific clinical context and requirements when selecting the most suitable algorithm for
practical implementation in healthcare settings.

5.2 Interpretation

Identifying patterns and relationships among the data is a crucial step in understanding
the research findings. In this study, the CNN algorithm demonstrated exceptional
performance in detecting Acute Liver Failure (ALF), achieving a precision score of 1.00 for
classifying ALF cases, indicating its ability to distinguish individuals with ALF accurately.
However, traditional algorithms like SVM, Decision Tree, KNN, and GNB faced challenges
in effectively classifying ALF cases, highlighting the importance of algorithm selection
based on dataset characteristics. While we expected CNN to perform well, the extent of its
success was pleasantly surprising and aligned with recent literature trends favoring deep
learning in medical diagnosis. The unexpected struggles of traditional algorithms in this
context suggest the need for further optimization and exploration of hybrid models. Overall,
this study underscores CNN's remarkable performance in ALF detection but emphasizes
the importance of algorithm suitability and dataset considerations in medical diagnosis
tasks, encouraging future research to enhance the performance of traditional algorithms
and explore hybrid approaches.

5.3 Implication of the research

Identifying patterns and relationships among the data is a crucial step in understanding
the research findings. In this study, we observed that the CNN algorithm exhibited
outstanding performance in detecting Acute Liver Failure (ALF), achieving a precision
score of 1.00 for classifying ALF cases. This pattern suggests that CNN effectively
distinguished individuals with ALF from those without, making no false-positive predictions.
In contrast, some other algorithms demonstrated strong performance in detecting
individuals without ALF but struggled with recall and precision in the ALF class, resulting in
lower F1-scores. This pattern implies a higher rate of false negatives and false positives
for these algorithms, indicating potential misdiagnosis. Regarding whether the results met
our expectations, it's essential to contextualize the findings within previous research. While
we anticipated that CNN, with its ability to capture intricate patterns in data, would perform
well, the extent of its success in achieving a precision score of 1.00 was pleasantly
surprising. This finding aligns with the trend observed in recent literature, which suggests
that deep learning methods, such as CNN, can excel in medical diagnosis tasks by
extracting complex features from medical data. However, the unexpected result lies in the



challenges faced by some traditional algorithms, such as SVM, Decision Tree, KNN, and
GNB, in classifying ALF cases effectively. These algorithms, while generally accurate in
detecting non-ALF cases, exhibited limitations in correctly identifying individuals with ALF.
This unexpected result underscores the importance of considering the unique
characteristics and complexities of the dataset and the disease itself when selecting a
suitable algorithm. To explain these unexpected results, several factors should be
considered. The nature of ALF data might have intricate patterns and dependencies that
are better captured by deep learning methods like CNN. Additionally, the dataset's class
imbalance, where ALF cases are a minority, may have affected the performance of some
algorithms. Furthermore, the feature engineering process and parameter tuning for
traditional algorithms might require further optimization. Considering possible alternative
explanations, future research could explore ensemble methods or hybrid models that
combine the strengths of both deep learning and traditional machine learning algorithms to
potentially achieve even better results in ALF detection. In summary, the study's findings
highlighted the remarkable performance of CNN in ALF detection, exceeding our
expectations. However, the less-than-optimal performance of traditional algorithms in this
specific context emphasizes the need for careful consideration of the algorithm's suitability
and the dataset's characteristics in medical diagnosis tasks. Future research can delve
deeper into improving the performance of these algorithms and exploring hybrid
approaches to enhance ALF detection accuracy.

5.4 Limitation of the research

Conclusions from the study highlight several key points. Firstly, the Convolutional
Neural Network (CNN) algorithm exhibited exceptional performance in detecting Acute
Liver Failure (ALF), achieving a remarkable precision score of 1.00, which signifies its
reliability in accurately identifying ALF cases without producing false-positive predictions.
On the other hand, traditional machine learning algorithms, including Support Vector
Machine (SVM), Decision Tree, K-Nearest Neighbors (KNN), Gaussian Naive Bayes
(GNB), and Gradient Boosting, demonstrated limitations in effectively classifying ALF
cases, particularly in terms of recall and precision within the ALF class. This research
underscores the increasing relevance of deep learning techniques in healthcare, further
validating recent literature emphasizing their efficacy in medical diagnosis tasks. Despite
certain limitations inherent in the dataset, such as class imbalance and the selection of
algorithms, the primary findings regarding CNN's exceptional performance in ALF detection
hold substantial merit. The precision score of 1.00 achieved by CNN reflects a robust
outcome, aligning with the broader trend in the literature highlighting the potential of deep
learning in healthcare. While the limitations may impact the overall generalizability and
comprehensiveness of the research, they do not diminish the significant finding regarding
CNN's effectiveness. The validity of the results for addressing the research questions
remains intact. The study's primary focus on algorithm performance and comparative
analysis remains sound, with the outstanding precision achieved by CNN serving as a clear
and robust indicator of its suitability for accurate ALF detection. Consequently, despite the
limitations, the results maintain their validity in addressing the central research question
concerning the effectiveness of various algorithms in ALF detection.

5.5 Future research recommendation

Recommendations for practical implementations include conducting rigorous clinical
validation studies in collaboration with healthcare institutions before deploying Al-based
ALF detection systems in clinical practice. Enhancing the interpretability of Al models is
crucial to build trust among healthcare professionals and facilitate informed decision-



making. Exploring the seamless integration of ALF detection models with Electronic Health
Records (EHR) systems can enable real-time monitoring, while continuous monitoring
systems should be considered for tracking patient data over time, given the dynamic nature
of ALF. Additionally, the development of telemedicine solutions and mobile applications
with ALF detection capabilities can improve healthcare access. For future research,
investigating ensemble models that combine deep learning and traditional machine
learning algorithms, conducting bias and fairness analyses, and exploring the use of time-
series data in ALF detection are essential. Developing clinical decision support systems
(CDSS) that provide treatment recommendations based on patient-specific data and
guidelines is another valuable avenue. Collaborating across multiple healthcare centers
and regions to collect diverse datasets and advancing Explainable Al (XAl) techniques
tailored for healthcare are essential. Lastly, conducting cost-benefit analyses to evaluate
the economic impact of implementing ALF detection models in healthcare systems can
inform decision-makers. Addressing these recommendations and research directions will
advance ALF detection, leading to more accurate diagnoses and improved patient
outcomes.

6. Conclusion

The analysis of the classification algorithms reveals that CNN performs exceptionally
well for the "no" class, achieving high precision (0.92), recall (1.00), and F1-score (0.96).
However, it completely fails to classify the "ALF" class, with all metrics at 0. This indicates
a significant limitation in handling imbalanced datasets or underrepresented classes. Other
algorithms like SVM, DT, KNN, and GNB show similar strengths for the "no" class but also
struggle with the "ALF" class, though KNN and GNB demonstrate slightly better
performance for "ALF" compared to CNN. These results suggest that while CNN is highly
effective for the majority class, it requires improvements, such as data balancing, feature
engineering, or model tuning, to enhance its performance for minority classes like "ALF."
Future work should focus on addressing these challenges to achieve more balanced and
accurate classification across all classes.
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