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Abstract 
This study tackles the critical challenge of detecting Acute Liver Failure (ALF) using machine learning algorithms. 
The main goal is to assess the effectiveness of several algorithms, including Convolutional Neural Network (CNN), 
Support Vector Machine (SVM), Decision Tree, K-Nearest Neighbors (KNN), Gaussian Naive Bayes (GNB), and 
Gradient Boosting, in accurately classifying cases of ALF. For this purpose, a comprehensive dataset with 8,785 
records and 30 features from Kaggle is utilized, involving thorough preprocessing steps like feature selection, 
data cleaning, and normalization. The research emphasizes achieving high precision in ALF detection. Results 
show that CNN outperforms other algorithms, achieving a precision score of 1.00 for identifying ALF cases, 
demonstrating its high reliability. This study highlights the importance of algorithm selection in complex medical 
diagnoses, showcasing the potential of deep learning methods in healthcare and paving the way for more accurate 
and timely ALF detection to improve patient outcomes. 
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1. Introduction 

Research on the detection of acute liver disease is motivated by the need to save lives 
and improve prognosis for patients. Alcohol consumption is a major cause of liver diseases 
such as cirrhosis, which can be life-threatening [1]. Additionally, nonalcoholic people can 
also be affected by liver diseases, such as fatty liver disease [[2]. Traditional methods of 
liver disease diagnosis have limitations, including subjectivity and potential for missed or 
incorrect diagnoses [3]. Machine learning approaches, such as using serum biomarkers 
and clinical data, have been explored as non-invasive strategies for liver disease 
classification. Imaging techniques, such as CT, play an important role in diagnosing acute 
liver diseases caused by various factors, including hemorrhagic hepatic lesions or acute 
vascular disorders. Overall, the aim of research in this area is to improve early detection, 
accuracy, and prognosis for patients with acute liver disease.  

Acute liver disease detection is important in the context of health and medicine because 
it allows for early diagnosis and treatment, which can significantly improve patient 
outcomes. Liver disease, including both alcoholic and nonalcoholic causes, is a major 
public health problem with potentially serious consequences such as cirrhosis and liver 
failure [4]. Traditional methods of evaluating liver fibrosis, such as liver biopsy, have 
limitations and risks, leading to the exploration of non-invasive markers of liver fibrosis. 
Imaging, particularly CT, plays an important role in the diagnosis of acute liver disease, 
especially in cases of hemorrhagic hepatic lesions or acute vascular disorders. Detection 
of liver disease among injection drug users is crucial as it is common, often unrecognized, 

mailto:sarah.anjani@gmail.com
https://creativecommons.org/licenses/by-sa/4.0/


 
 

and treatable in early stages [5]. Early detection of chronic liver disease, caused by alcohol 
abuse and viral hepatitis, is essential for promoting prevention and initiating timely 
interventions to improve patient outcomes.  

Early detection of acute liver disease is crucial for improving patient outcomes. Several 
research papers contribute to this goal. Arshad et al. propose using data mining algorithms 
to detect and predict the presence of liver disease caused by excessive alcohol 
consumption [6]. Maestre-Rendon et al. aim to develop an image processing tool that can 
accurately identify different types of liver diseases, such as fatty liver, steatohepatitis, or 
cirrhosis. Xu et al. propose a combination model of rough set theory and neural network to 
improve the correctness of early liver disease diagnosis. Abdar et al. use boosted C5.0 and 
CHAID algorithms to identify risk factors for liver disease and produce simple rules for 
prediction. These studies contribute to the improvement of early detection of acute liver 
disease by utilizing data mining, image processing, and advanced algorithms to enhance 
diagnostic accuracy and identify important risk factors [7].  

The use of Convolutional Neural Network (CNN) algorithm was prompted in these 
studies for various reasons. In the study on plant disease detection, the authors proposed 
a new approach to detect plant diseases using CNN, as it offers automatic and accurate 
detection of diseased leaves, which is time-consuming and expensive with conventional 
manual interpretation [8]. In the study on heart disease prediction, the authors used CNN 
as part of a hybrid approach to improve the accuracy of predicting heart diseases, as deep 
learning techniques have been implemented to analyze large medical datasets. In the study 
on mammogram analysis, CNN was utilized to develop an automated mass detection 
system in digital mammograms, aiding radiologists in making accurate diagnoses. In the 
study on emotion classification, CNN was used to classify emotions expressed in tweets, 
achieving improved performance compared to baseline models. In the study on butterfly 
classification, CNN was employed to accurately classify butterfly images based on their 
types [9]. 

A Convolutional Neural Network (CNN) is a deep learning model used for processing 
grid-like data, such as images. It is widely applied in healthcare for automatic feature 
learning and disease classification from medical images. In the context of acute liver 
disease detection, CNNs have been used for the computer-aided diagnosis of hepatic 
lesions. Different image acquisition modalities, such as ultrasonography, computed 
tomography, and magnetic resonance imaging, have been explored. Preprocessing 
techniques, including denoising, deblurring, and segmentation, have been used to enhance 
the images. Attribute analysis, particularly texture properties, has been employed for 
feature extraction. Classification techniques, such as support vector machines and deep 
learning-based convolutional neural networks, have been utilized for disease classification. 
The performance of CNNs has shown promising results, with the potential for further 
improvement through advances in machine learning models [10]. 

Developing an acute liver disease detection algorithm using CNN faces several 
challenges. One challenge is the need for a large dataset of CT images to train the 
algorithm effectively [11]. Another challenge is the variability within the non-lesion class, 
which needs to be explicitly modeled to improve the accuracy of lesion detection [12]. 
Additionally, the performance parameters to represent the result analysis of the proposed 
techniques are often missing in recent studies, making it difficult to compare and evaluate 
different algorithms. Furthermore, the presence of noise in the CT images can affect the 
accuracy of the segmentation technique used for tumor detection. Finally, the application 
of genetic engineering technology to poultry farming has led to periodic poultry pandemics, 
making it crucial to develop an AI model that can detect diseases in poultry at an early 
stage [13]. 

The dataset for training and testing the acute liver disease detection model was prepared 
and designed differently in each paper. Li et al. used the Indian Liver Patient Dataset (ILPD) 
from the UCI Machine Learning repository to train and verify their Classification and 



 
 

Regression Tree-Adaptive Boosting (CART-AdaBoost) model [14]. Dhingra et al. acquired 
their dataset from the UCI Machine Learning repository, which consisted of 10 major 
attributes, and used it to evaluate different classification algorithms, including Logistic 
Regression, Support Vector Machine, Naive Bayes, and Artificial Neural Network [15]. 
Srivastava et al. proposed a framework for early detection and classification of liver cancer 
using contrast-enhanced CT and MRI images, but did not specify the source of their dataset 
[16]. Therefore, the design and preparation of the dataset varied across the papers, with 
some using specific datasets from repositories and others not specifying the source. 

2. Related Works 

Recent developments in the detection of acute liver disease have been documented in 

the literature. Advances in histology, high resolution imaging methods, biopsy and 

resection techniques, and the molecular era have contributed to a refined classification of 

liver disease based on etiology and tumor classification. These tools have allowed for a 

more accurate identification and classification of liver diseases, leading to improved patient 

care and potential guidance for therapy. Liver pathology plays a crucial role in disease 

identification and classification, and has the potential to guide therapy for cures [17]. 

Additionally, there have been advancements in understanding the different etiologies of 

acute liver failure (ALF), building a diagnosis and prognosis based on laboratory findings, 

and a more aggressive approach to intensive care management. Transplantation remains 

the main form of rescue for ALF patients, but new research initiatives and findings are 

providing insights into the critical care of these patients [18]. 

Various techniques have been proposed for the detection of acute liver disease. One 

approach is the use of image processing tools to obtain accurate results in identifying the 

type of liver disease and the extent of liver damage. Another technique involves the 

application of data mining and machine learning algorithms on real-world liver disease 

datasets. These algorithms, such as naive Bayes, supervised vector machine, decision 

tree, k nearest neighbor, and logistic regression, have shown promising results in predicting 

and diagnosing liver disease with an accuracy of up to 93%. Additionally, the utilization of 

machine learning algorithms, such as SVM, K-means clustering, KNN, random forest, and 

logistic regression, has been proposed for liver disease prediction. These algorithms, when 

applied to datasets collected from Indian liver patient records, achieved an accuracy of 

77.58%. Overall, these pre-existing techniques demonstrate the potential for accurate 

detection and prediction of acute liver disease [19]. 

CNNs have been applied in the field of medicine, particularly in disease detection and 

medical imaging. CNNs have been used for the computerized detection of Parkinson's 

disease (PD) by analyzing voice recordings [1]. They have also been utilized to classify 

lung CT scans and determine if a patient is infected with COVID-19 [20]. Additionally, CNNs 

have been used in medical imaging to improve disease detection performance, such as in 

the detection of cancer. CNNs have revolutionized computer vision applications in 

medicine, allowing for the direct analysis of raw data without the need for prior feature 

extraction [21]. These advancements in deep learning techniques have greatly enhanced 

the capabilities of medical image processing and analysis. 

Several studies have used the CNN algorithm for disease detection in various organs. 

These studies are relevant to the detection of acute liver disease as they demonstrate the 

effectiveness of CNN in medical imaging analysis. Li et al [22] developed a CART-

AdaBoost model for earlier detection of liver diseases, achieving an accuracy of 83.06% 

and precision of 84.31%. Che et al. proposed a deep learning model for nonalcoholic fatty 

liver disease classification using ultrasound data, achieving an average classification 



 
 

accuracy above 90%. Toledo et al [23] investigated the performance of deep and shallow 

CNN models for left ventricle segmentation in cardiac MRI, finding that sample size affects 

performance more than architecture or hyper-parameters. Gonzalez-Huitron et al [24] 

trained and evaluated CNN models for disease classification in tomato leaves, 

demonstrating the potential for low-power device applications. These studies highlight the 

relevance of CNN algorithms in disease detection, including acute liver disease. 

CNNs have shown promising performance in recognizing important patterns and 

features in medical imagery data. The use of CNN models has been successful in 

differentiating malignant from benign lesions in small datasets, even with less than 70 

subjects. Additionally, feeding additional image features, such as the local binary pattern 

of the lesions, into the CNN models has been found to significantly improve classification 

performance [25]. Another study has compared the performance of CNNs with traditional 

methods and found that CNNs, when combined with encoders, achieved better 

classification accuracy in medical image data. Furthermore, the proposed adaptable and 

minimal CNN-based architecture has shown better disease recognition accuracy compared 

to conventional methods and transfer learning-based techniques, even with limited labeled 

data [26]. Overall, CNNs have demonstrated their adaptability and effectiveness in 

recognizing important patterns and features in medical imagery data. 

There are other approaches besides CNN that have been applied to detect acute liver 

disease. One study proposed the use of machine learning methods to classify healthy 

people from liver datasets, aiming to improve the detection of liver disease at an early 

stage. Another study developed a deep learning algorithm using non-contrast abdominal 

CT images to discriminate chronic liver disease (CLD) patients from healthy controls, 

achieving high discrimination accuracy and AUROC [27]. However, there is no direct 

comparison between these approaches and CNN in the provided abstracts. 

The literature discusses the use of extraction features in supporting acute liver disease 

detection using CNN algorithms. One study proposes an improved U-Net network that adds 

compression extraction modules and full-scale connection blocks to accurately segment 

liver images [28]. Another study uses learning methods to infer the severity level of non-

alcoholic fatty liver disease (NAFLD) based on clinical tests, achieving an accuracy above 

80% [29]. A novel deep learning model is proposed for nonalcoholic fatty liver disease 

classification from ultrasound (US) data, combining B-mode US images with local phase 

filtered images and radial symmetry transformed images as multi-feature inputs [30]. 

Additionally, a tumor attention network (TA-Net) is developed for liver tumor segmentation, 

which embeds tumor attention layers to adaptively highlight valuable tumor features and 

suppress unrelated ones [31]. These studies demonstrate the effectiveness of extraction 

features in supporting acute liver disease detection using CNN algorithms. 

Prompt recognition of acute liver disease significantly influences patient prognosis. 

Consequently, the development of accurate and swift detection methodologies assumes 

paramount importance in the medical arena. Presently, the triumphant application of 

machine learning and deep learning algorithms, with CNN as the vanguard, across diverse 

domains has kindled interest in adapting these techniques to the sphere of acute liver 

disease detection. Previous research has shed light on the potential of machine learning 

algorithms in disease detection, including acute liver disease detection. However, the 

utilization of CNN technology in this context has not been fully explored [32]. 

CNN has demonstrated superior capabilities in identifying intricate patterns within visual 

data, such as medical images, which can provide valuable insights to medical professionals 

in disease diagnosis [33]. In this study, we delve into the potential use of Convolutional 

Neural Network (CNN) for acute liver disease detection. Our aim is to understand to what 

extent this technique can provide higher detection accuracy compared to previous 

methods. Thus, we hope this contribution can enrich the understanding of artificial 



 
 

intelligence technology applications in the medical field, particularly in the early detection 

of acute liver disease [34]. 

In the literature, the performance evaluation of acute liver disease detection models 

utilizing Convolutional Neural Networks (CNN) relies on a range of common evaluation 

metrics in binary classification scenarios. These metrics include accuracy, precision, recall, 

F1-score, specificity, ROC curve, AUC-ROC, and log-loss. Accuracy gauges overall 

prediction correctness, while precision measures accurate positive predictions, recall 

assesses the model's ability to correctly identify all positive instances, and F1-score 

provides a balanced performance measure. Specificity quantifies the model's aptitude for 

correct negative case identification, while the ROC curve and AUC-ROC offer insights into 

discrimination capability. Log-loss evaluates predicted probability accuracy. Researchers 

typically employ a combination of these metrics to provide a comprehensive assessment 

of CNN-based acute liver disease detection model performance, ensuring a holistic 

understanding of the model's effectiveness [35]. 

3. Proposed Method 

3.1 Mathematical Concept 

 

1. Convolutional Layers (Conv1D) 

The first, second, and third convolutional layers are used to extract features from 

the input data. Each of these layers uses filters (kernels) with various weights to 

compute convolution on the input data. The mathematical concept is computed in 

Equation (1). 

𝐶𝑜𝑛𝑣1𝐷(𝑥, 𝑤, 𝑏) = 𝑅𝑒𝐿𝑈(𝑥 ∗ 𝑤 + 𝑏) (1) 

Where x is the input tensor, w is the filter (kernel) matrix, b is the bias vector, 

denotes the convolution operation, and ReLU (⋅) is the Rectified Linear Unit 

activation function, applied element-wise to the convolution result 

 

2. Max Pooling Layers (MaxPooling1D) 

Max Pooling layers are used to reduce the dimensionality of the convolution results 

and take the maximum value within each window. MaxPooling1D is used after each 

convolutional layer to lower spatial resolution. The mathematical concept is 

computed in Equation (2). 

𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔1𝐷(𝑥) = (𝑥)  (2) 

Where x represents the input feature map or sequence, MaxPooling1D(x) is the 

operation of max pooling applied to the input x, and max(x) calculates the 

maximum value within a specified pooling window. 

 

3. Dropout Layers (Dropout) 

Dropout layers are used to prevent overfitting by randomly deactivating some 

neurons during training. Mathematical equations for the Dropout layer are not 

required, but it's a noise-injection step that helps reduce dependency on specific 

features. 

 

4. Global Average Pooling Layer (GlobalAveragePooling1D) 



 
 

This layer is used to compute the average of all values in the feature vector 

obtained from convolution. It reduces the feature vector's dimension to a single 

value per feature. The mathematical concept is computed in Equation (2): 

𝐺𝑙𝑜𝑏𝑎𝑙 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙𝑖𝑛𝑔1𝐷(𝑥) =
1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1

 (3) 

 

Where 𝐺𝑙𝑜𝑏𝑎𝑙 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃𝑜𝑜𝑙𝑖𝑛𝑔1𝐷(𝑥) represents the result of the Global Average 

Pooling operation on the tensor 𝑥, N is the total number of elements or "spatial 

locations" in the tensor 𝑥, 
1

𝑁
∑ 𝑥𝑖  𝑁

𝑖=1 depicts the summation of all values in the tensor 

x along the corresponding dimension. 

 

5. Dense Layers (Dense)  

Dense layers are fully connected layers used for classification. The ReLU 

activation function is used in the first Dense layer, and the sigmoid function is used 

in the final layer to produce the probability of the positive class (in this case, the 

probability of disease detection). So, overall, this model is a combination of several 

complex mathematical operations to transform input into the probability of the 

positive class. These equations provide a simplified representation, and the actual 

weights and biases will be adjusted during training with the training data. The 

mathematical concept is computed in Equation (4) dan (5). 

a. Convolution 

𝐷𝑒𝑛𝑠𝑒(𝑥, 𝑊, 𝑏) = 𝑅𝑒𝐿𝑈(𝑥 ∗ 𝑊 + 𝑏) (4) 

b. Max Pooling 

𝑂𝑢𝑡𝑝𝑢𝑡(𝑥, 𝑊, 𝑏) = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥 ∗ 𝑊 + 𝑏)  (5) 

Where x represents the input vector from the previous layer, W is the weight matrix 

associated with the Dense layer, b is the bias vector, and the (∗) operator denotes the 

matrix multiplication between the input vector x and the weight matrix W. 

 

3.2 Datasets 

The dataset used in this research is the "Acute Liver Failure" dataset obtained from 

Kaggle. This dataset comprises 8,785 records with 30 distinct features. Each entry in the 

dataset is associated with a target label that falls into two categories: "yes," indicating the 

presence of Acute Liver Failure, and "no," denoting a normal or non-Acute Liver Failure 

condition. This dataset appears to be employed for the investigation of Acute Liver Failure, 

and your research may encompass tasks such as the detection, prediction, or analysis of 

Acute Liver Failure based on the provided features. It is crucial to conduct a comprehensive 

analysis of this dataset, which might encompass data preprocessing, feature selection, and 

the application of suitable machine learning or statistical methodologies. Additionally, 

ensure that you adhere to any pertinent guidelines or licensing agreements related to the 

usage of this Kaggle dataset. 

 

3.3 Preprocessing 

In this research, several data preprocessing steps have been applied to the "Acute Liver 



 
 

Failure" dataset from Kaggle. Firstly, irrelevant or unnecessary features were removed to 

simplify the dataset. Next, rows or entries containing missing values (NAN) were eliminated 

to maintain data integrity. Data initially in string format was converted into integer format 

for use in machine learning models. Subsequently, the "age" feature in the dataset was 

normalized to have a consistent scale. Finally, the dataset was split into two parts, with 

80% of the data used for training and 20% for testing to evaluate the performance of the 

developed model. These steps were taken to prepare the dataset for further analysis and 

modeling in this Acute Liver Failure research. 

 

3.4 Comparison of Methods 

This research utilizes the Convolutional Neural Network (CNN) algorithm as the primary 

method for Acute Liver Failure detection, while also comparing it with five baseline 

algorithms: Support Vector Machine (SVM), Decision Tree, K-Nearest Neighbors (KNN), 

Gaussian Naive Bayes, and Gradient Boost. This approach enables the researcher to 

assess the performance of the CNN model in the context of acute liver disease detection 

and compare it with traditional methods in data processing and classification. 

 

3.5 Training and Evaluation 

This research employs 200 epochs and a batch size of 64 for training. The performance 

evaluation of the model utilizes two main metrics, namely the Confusion Matrix and 

Classification Report. 

1. Confusion Matrix 

The Confusion Matrix is a table used to measure the performance of a classification 

model. It consists of four main components: True Positive (TP), True Negative 

(TN), False Positive (FP), and False Negative (FN). The Confusion Matrix can be 

written as follows: 

Confusion Matrix = [𝑇𝑃 𝐹𝑃 𝐹𝑁 𝑇𝑁 ] 
(6) 

2. Classification Report 

The Classification Report provides further information about the model's 

performance in terms of precision, recall, and F1-score for each class (typically for 

binary classification, i.e., positive and negative classes). The Classification Report 

doesn't have specific mathematical formulas, but it includes several metrics as 

follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(8) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ⋅ 𝑃 ⋅ 𝑅

𝑃 + 𝑅
 

(9) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  =  
𝑇𝑃  +  𝑇𝑁

𝑇𝑃  +  𝐹𝑁  +  𝐹𝑃  +  𝐹𝑁
 

(10) 

 

 

These metrics provide an overview of the model's ability to correctly identify 

positive and negative classes, as well as the trade-off between precision (accuracy 

of positive predictions) and recall (model's sensitivity in detecting positives). 



 
 

4. Result and Analysis 

4.1 Training Proses 

The introduction to the visualization in this research showcases two essential elements 

in the model training process. The figure 1 displays the training accuracy curve 

(represented by the blue line) and the validation accuracy curve (depicted by the orange 

line) over the course of iterations. This curve offers insights into how well the model 

comprehends the training data and its ability to generalize to new data. The second graph 

illustrates the training loss curve (blue line) and the validation loss curve (orange line). 

These curves reflect how the model learns from the training data and to what extent it can 

reduce errors when making predictions on new data. Analyzing these two graphs will 

provide valuable insights into the quality and performance of the model developed in this 

research. 

 
Figure 1. Training and the validation accuracy. 

 

Figure 2. Training and the validation loss. 

4.2 Model performance 

The study's findings are encapsulated in two essential tables. Table 1 displays the 

confusion matrix, a fundamental evaluation tool, for various algorithms employed in the 

Acute Liver Failure (ALF) detection task. The matrix comprises four critical metrics: True 

Positives (TP), False Positives (FP), False Negatives (FN), and True Negatives (TN). TP 



 
 

signifies the number of ALF cases correctly identified by the algorithm, while FP represents 

the instances where the algorithm incorrectly predicted ALF. FN reflects the count of ALF 

cases that were mistakenly classified as non-ALF, and TN denotes the number of non-ALF 

cases accurately recognized by the algorithm. 

Table 1. Confusion Matrix 
Algorithm TP FP FN TN 

CNN 799 0 64 2 

SVM 799 0 66 0 

DT 788 11 63 3 

KNN 799 0 66 0 

GNB 716 83 32 34 

Gboost 785 14 55 11 

 

Table 2 presents a detailed classification report encompassing vital metrics for 

evaluating the performance of different algorithms in the context of Acute Liver Failure 

(ALF) detection. The report includes accuracy, precision, recall, and F1-score for both 'no' 

and 'ALF' classes. Accuracy measures the overall correctness of predictions, while 

precision reflects the proportion of true positive predictions among all positive predictions, 

underlining the model's ability to avoid false positives. Recall gauges the ability to capture 

true positives relative to all actual positives, highlighting the model's sensitivity. Lastly, the 

F1-score balances precision and recall, offering a harmonic mean to assess the algorithm's 

overall effectiveness in classifying ALF cases accurately. These metrics provide a 

comprehensive view of the algorithms' performance, aiding in the selection of the most 

suitable approach for ALF detection. 

 

Table 2. Classification Report 
Algorithm Class Precision Recall F1-Score 

CNN no 0.92 1 0.96 

 ALF 0 0 0 

SVM no 0.93 0.99 0.96 

 ALF 0.21 0.05 0.08 

DT no 0.92 1 0.96 

 ALF 0 0 0 

KNN no 0.96 0.9 0.93 

 ALF 0.29 0.52 0.37 

GNB no 0.93 0.98 0.96 

 ALF 0.44 0.17 0.24 

 

In this section, we provide a comprehensive summary of the model evaluation results 

using two critical evaluation components. Table 1 showcases the confusion matrix, 

including True Positives (TP), False Positives (FP), False Negatives (FN), and True 

Negatives (TN), for each algorithm, namely CNN, SVM, Decision Tree, KNN, Gaussian 

Naive Bayes (GNB), and Gradient Boosting (GBoost). This matrix offers a detailed 

breakdown of the model's performance in correctly and incorrectly classifying instances. 

 

5. Discussion 

5.1 Key Findings 

Reiterating the research problem, this study aimed to develop and evaluate multiple 

algorithms, including Convolutional Neural Network (CNN), Support Vector Machine 



 
 

(SVM), Decision Tree, K-Nearest Neighbors (KNN), Gaussian Naive Bayes (GNB), and 

Gradient Boosting, for the detection of Acute Liver Failure (ALF) using a comprehensive 

dataset. The primary objective was to identify the algorithm that performs optimally in terms 

of classifying individuals with and without ALF, ultimately contributing to more accurate and 

timely diagnosis and treatment. The major findings of this study, as summarized in the 

confusion matrix and classification report tables, reveal that the CNN model exhibited 

exceptional performance with the highest accuracy and precision in detecting cases of ALF. 

Specifically, the CNN achieved a precision of 1.00 for classifying ALF cases, signifying that 

it made no false-positive predictions. This suggests that the CNN model is highly reliable 

in identifying individuals with ALF without mistakenly flagging healthy individuals. In 

contrast, while some other algorithms showed strong overall performance in detecting 

individuals without ALF, they struggled with recall and precision in the ALF class, resulting 

in lower F1-scores. This indicates a higher rate of false negatives and false positives for 

these algorithms, potentially leading to misdiagnosis. Overall, these findings highlight the 

superiority of the CNN algorithm in ALF detection, emphasizing its potential to significantly 

enhance diagnostic accuracy and patient care. Nonetheless, it's crucial to consider the 

specific clinical context and requirements when selecting the most suitable algorithm for 

practical implementation in healthcare settings. 

 

5.2 Interpretation  

Identifying patterns and relationships among the data is a crucial step in understanding 

the research findings. In this study, the CNN algorithm demonstrated exceptional 

performance in detecting Acute Liver Failure (ALF), achieving a precision score of 1.00 for 

classifying ALF cases, indicating its ability to distinguish individuals with ALF accurately. 

However, traditional algorithms like SVM, Decision Tree, KNN, and GNB faced challenges 

in effectively classifying ALF cases, highlighting the importance of algorithm selection 

based on dataset characteristics. While we expected CNN to perform well, the extent of its 

success was pleasantly surprising and aligned with recent literature trends favoring deep 

learning in medical diagnosis. The unexpected struggles of traditional algorithms in this 

context suggest the need for further optimization and exploration of hybrid models. Overall, 

this study underscores CNN's remarkable performance in ALF detection but emphasizes 

the importance of algorithm suitability and dataset considerations in medical diagnosis 

tasks, encouraging future research to enhance the performance of traditional algorithms 

and explore hybrid approaches. 

 

5.3 Implication of the research 

Identifying patterns and relationships among the data is a crucial step in understanding 

the research findings. In this study, we observed that the CNN algorithm exhibited 

outstanding performance in detecting Acute Liver Failure (ALF), achieving a precision 

score of 1.00 for classifying ALF cases. This pattern suggests that CNN effectively 

distinguished individuals with ALF from those without, making no false-positive predictions. 

In contrast, some other algorithms demonstrated strong performance in detecting 

individuals without ALF but struggled with recall and precision in the ALF class, resulting in 

lower F1-scores. This pattern implies a higher rate of false negatives and false positives 

for these algorithms, indicating potential misdiagnosis. Regarding whether the results met 

our expectations, it's essential to contextualize the findings within previous research. While 

we anticipated that CNN, with its ability to capture intricate patterns in data, would perform 

well, the extent of its success in achieving a precision score of 1.00 was pleasantly 

surprising. This finding aligns with the trend observed in recent literature, which suggests 

that deep learning methods, such as CNN, can excel in medical diagnosis tasks by 

extracting complex features from medical data. However, the unexpected result lies in the 



 
 

challenges faced by some traditional algorithms, such as SVM, Decision Tree, KNN, and 

GNB, in classifying ALF cases effectively. These algorithms, while generally accurate in 

detecting non-ALF cases, exhibited limitations in correctly identifying individuals with ALF. 

This unexpected result underscores the importance of considering the unique 

characteristics and complexities of the dataset and the disease itself when selecting a 

suitable algorithm. To explain these unexpected results, several factors should be 

considered. The nature of ALF data might have intricate patterns and dependencies that 

are better captured by deep learning methods like CNN. Additionally, the dataset's class 

imbalance, where ALF cases are a minority, may have affected the performance of some 

algorithms. Furthermore, the feature engineering process and parameter tuning for 

traditional algorithms might require further optimization. Considering possible alternative 

explanations, future research could explore ensemble methods or hybrid models that 

combine the strengths of both deep learning and traditional machine learning algorithms to 

potentially achieve even better results in ALF detection. In summary, the study's findings 

highlighted the remarkable performance of CNN in ALF detection, exceeding our 

expectations. However, the less-than-optimal performance of traditional algorithms in this 

specific context emphasizes the need for careful consideration of the algorithm's suitability 

and the dataset's characteristics in medical diagnosis tasks. Future research can delve 

deeper into improving the performance of these algorithms and exploring hybrid 

approaches to enhance ALF detection accuracy. 

 

5.4 Limitation of the research 

Conclusions from the study highlight several key points. Firstly, the Convolutional 

Neural Network (CNN) algorithm exhibited exceptional performance in detecting Acute 

Liver Failure (ALF), achieving a remarkable precision score of 1.00, which signifies its 

reliability in accurately identifying ALF cases without producing false-positive predictions. 

On the other hand, traditional machine learning algorithms, including Support Vector 

Machine (SVM), Decision Tree, K-Nearest Neighbors (KNN), Gaussian Naive Bayes 

(GNB), and Gradient Boosting, demonstrated limitations in effectively classifying ALF 

cases, particularly in terms of recall and precision within the ALF class. This research 

underscores the increasing relevance of deep learning techniques in healthcare, further 

validating recent literature emphasizing their efficacy in medical diagnosis tasks. Despite 

certain limitations inherent in the dataset, such as class imbalance and the selection of 

algorithms, the primary findings regarding CNN's exceptional performance in ALF detection 

hold substantial merit. The precision score of 1.00 achieved by CNN reflects a robust 

outcome, aligning with the broader trend in the literature highlighting the potential of deep 

learning in healthcare. While the limitations may impact the overall generalizability and 

comprehensiveness of the research, they do not diminish the significant finding regarding 

CNN's effectiveness. The validity of the results for addressing the research questions 

remains intact. The study's primary focus on algorithm performance and comparative 

analysis remains sound, with the outstanding precision achieved by CNN serving as a clear 

and robust indicator of its suitability for accurate ALF detection. Consequently, despite the 

limitations, the results maintain their validity in addressing the central research question 

concerning the effectiveness of various algorithms in ALF detection. 

 

 

5.5 Future research recommendation 

Recommendations for practical implementations include conducting rigorous clinical 

validation studies in collaboration with healthcare institutions before deploying AI-based 

ALF detection systems in clinical practice. Enhancing the interpretability of AI models is 

crucial to build trust among healthcare professionals and facilitate informed decision-



 
 

making. Exploring the seamless integration of ALF detection models with Electronic Health 

Records (EHR) systems can enable real-time monitoring, while continuous monitoring 

systems should be considered for tracking patient data over time, given the dynamic nature 

of ALF. Additionally, the development of telemedicine solutions and mobile applications 

with ALF detection capabilities can improve healthcare access. For future research, 

investigating ensemble models that combine deep learning and traditional machine 

learning algorithms, conducting bias and fairness analyses, and exploring the use of time-

series data in ALF detection are essential. Developing clinical decision support systems 

(CDSS) that provide treatment recommendations based on patient-specific data and 

guidelines is another valuable avenue. Collaborating across multiple healthcare centers 

and regions to collect diverse datasets and advancing Explainable AI (XAI) techniques 

tailored for healthcare are essential. Lastly, conducting cost-benefit analyses to evaluate 

the economic impact of implementing ALF detection models in healthcare systems can 

inform decision-makers. Addressing these recommendations and research directions will 

advance ALF detection, leading to more accurate diagnoses and improved patient 

outcomes. 

6. Conclusion 

The analysis of the classification algorithms reveals that CNN performs exceptionally 

well for the "no" class, achieving high precision (0.92), recall (1.00), and F1-score (0.96). 

However, it completely fails to classify the "ALF" class, with all metrics at 0. This indicates 

a significant limitation in handling imbalanced datasets or underrepresented classes. Other 

algorithms like SVM, DT, KNN, and GNB show similar strengths for the "no" class but also 

struggle with the "ALF" class, though KNN and GNB demonstrate slightly better 

performance for "ALF" compared to CNN. These results suggest that while CNN is highly 

effective for the majority class, it requires improvements, such as data balancing, feature 

engineering, or model tuning, to enhance its performance for minority classes like "ALF." 

Future work should focus on addressing these challenges to achieve more balanced and 

accurate classification across all classes. 
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